Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper, we introduce a quasi-Newton method optimized for efficiently solving quasi-linear elliptic equations and systems, with a specific focus on GPU-based computation. By approximating the Jacobian matrix with a combination of linear Laplacian and simplified nonlinear terms, our method reduces the computational overhead typical of traditional Newton methods while handling the large, sparse matrices generated from discretized PDEs. We also provide a convergence analysis demonstrating local convergence to the exact solution under optimal choices for the regularization parameter, ensuring stability and efficiency in each iteration. Numerical experiments in two- and three-dimensional domains validate the proposed method’s robustness and computational gains with tensor product implementation. This approach offers a promising pathway for accelerating quasi-linear elliptic equations and systems solvers, expanding the feasibility of complex simulations in physics, engineering, and other fields leveraging advanced hardware capabilities.more » « less
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Unabated 21st-century climate change will accelerate Arctic-Subarctic permafrost thaw which can intensify microbial degradation of carbon-rich soils, methane emissions, and global warming. The impact of permafrost thaw on future Arctic-Subarctic wildfires and the associated release of greenhouse gases and aerosols is less well understood. Here we present a comprehensive analysis of the effect of future permafrost thaw on land surface processes in the Arctic-Subarctic region using the CESM2 large ensemble forced by the SSP3-7.0 greenhouse gas emission scenario. Analyzing 50 greenhouse warming simulations, which capture the coupling between permafrost, hydrology, and atmosphere, we find that projected rapid permafrost thaw leads to massive soil drying, surface warming, and reduction of relative humidity over the Arctic-Subarctic region. These combined processes lead to nonlinear late-21st-century regime shifts in the coupled soil-hydrology system and rapid intensification of wildfires in western Siberia and Canada.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Emergence of Madden-Julian oscillation precipitation and wind amplitude changes in a warming climateAbstract The Madden-Julian oscillation (MJO) has profound impacts on weather and climate phenomena, and thus changes in its activity have important implications under human-induced global climate change. Here, the time at which the MJO change signal emerges from natural variability under anthropogenic warming is investigated. Using simulations of the Community Earth System Model version 2 large ensemble forced by the shared socioeconomic pathways SSP370 scenario, an increase in ensemble mean MJO precipitation amplitude and a smaller increase in MJO circulation amplitude occur by the end of the 21 st century, consistent with previous studies. Notably, the MJO precipitation amplitude change signal generally emerges more than a decade earlier than that of MJO wind amplitude. MJO amplitude changes also emerge earlier over the eastern Pacific than other parts of the tropics. Our findings provide valuable information on the potential changes of MJO variability with the aim of improving predictions of the MJO and its associated extreme events.more » « less
-
Abstract A unified approach to mono- and disubstituted N–H indoles is described by means of oxidative cyclization of 2-alkenyl anilines, which are prepared by cross-coupling of the corresponding o-bromoanilines. This procedure is operationally expedient and tolerant of common functional groups to allow regiospecific installation of the alkyl and aryl substituents.more » « less
-
This paper studies the sustainability of plastrons on superhydrophobic (SHPo) surfaces made of longitudinal micro-trenches covered by nano-grass with the main interest on hydrodynamic friction drag reduction in high-speed flows of open water, which represent the operating conditions of common watercraft. After revising the shear-driven drainage model to address the air diffusion for SHPo surfaces, the existing theories are combined to reveal the trends of how the immersion depth, air saturation level and shear stress affect the maximum attainable plastron length. Deviations from the theories by the dynamic effect at the two ends of the trench, the interfacial contaminations and turbulent fluctuation are also discussed. A combinatorial series of well-defined SHPo trench surfaces (4 cm × 7 cm in size with varying trench widths, depths, lengths and roughnesses) is microfabricated and attached underneath a 4 m long motorboat on seawater in turbulent flows up to 7.2 m s −1 (shear rate ∼83 000 s −1 and friction Reynolds number ∼5500). Because the plastron can provide a substantial slip only while its air–water interfaces are pinned (or only slightly depinned) at the trench top, two underwater cameras are employed to differentiate the pinned (and slightly depinned) interfaces from the depinned (and no) interfaces. In addition to achieving pinned plastrons on 6 cm long trenches aligned to high-speed flows in open water, the experimental results corroborate the theoretical estimations, supporting the design of SHPo surfaces for field applications.more » « less
-
In the physical description of photonic lattices, leaky-mode resonance and bound states in the continuum are central concepts. Understanding of their existence conditions and dependence on lattice parameters is of fundamental interest. Primary leaky-wave effects are associated with the second stop band at the photonic lattice Γ point. The pertinent band gap is defined by the frequency difference between the leaky-mode band edge and the bound-state edge. This paper address the polarization properties of the band gaps resident in laterally periodic one-dimensional photonic lattices. We show that the band gaps pertinent to TM and TE leaky modes exhibit significantly differentiated evolution as the lattice parameters vary. This is because the TM band gap is governed by a surface effect due to the discontinuity of the dielectric constant at the interfaces of the photonic lattice as well as by a Bragg effect due to the periodic in-plane dielectric constant modulation. We find that when the lattice is thin (thick), the surface (Bragg) effect dominates the Bragg (surface) effect in the formation of the TM band. This leads to complex TM band dynamics with multiple band closures possible under parametric variation. In complete contrast, the TE band gap is governed only by the Bragg effect thus exhibiting simpler band dynamics. This research elucidates the important effect of polarization on resonant leaky-mode band dynamics whose explanation has heretofore not been available.more » « less
An official website of the United States government
